
S-matrix for generalized Landau-Zener problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 1211

(http://iopscience.iop.org/0305-4470/26/5/037)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 26 (1993) 1211-1227. Printed in the UK 

S-matrix for generalized Landau-Zener problem 

Stefan Brundobler and Veit Elser 
Jaboratoly of Atomic and Solid State Physics, Cornel1 University, Ithaca. NY 14853- 
2501, USA 

W i v e d  15 July 1992 

Abstract. The Schrijdingez equation iG = (A+Bt)YI with constant Hermitian matrices 
A and B h studied. In the form where B ir diagonalized, this equation is a generalization 
of the Lmtdou-Zmer problem to an arbitraly number of crossing energy levels. An 
approach-the brdeparde,v ocSring qppr&nation-leading lo a partial understanding of 
the general case in terms of the wo-level problem is inlroduced. It is found that certain 
S-math elements (and thus the corresponding vansition probabilities) for the general 
pmblem are mcdy given by formulae of unexpected simplicity, suggesting that some kind 
of general analytic solution might exist The full S-matrix b calculated for a solvable 
special case of the problem. The solution of another special case, previously discovered 
lor vtems with three states, is generalized to any number of states. The asymptotic 
behaviour of the system is discussed in general and given fxplicitly to lowest order in 
lJt .  

1. Introduction 

Generally it is very difiicult to obtain analytic results for Schrodinger equations with 
time-dependent Hamiltonians. The most simple kind of time dependence one can 
imagine-at least in a formal s e n s e i s  a linear one, corresponding to a Schrodinger 
equation of the form i@(t) = (A + Bt)@(t) with Hermitian (say n x n )  matrices A 
and B. In the form where B is diagonalized, this equation is generally referred to as 
the level crossing or (for n = 2) Landau-Zener problem. Applications include nuclear 
[3] and atomic [4] collisions, quantum optics [5] and atoms in timedependent electric 
[6,7] or magnetic [SI fields. Our motivation for working on this problem is that it 
describes (in some approximation) a uniformly accelerated particle coupled to a bath 
of harmonic excitations [9]. Even though the case of two levels (degrees of freedom) 
was studied and solved already in 1932 by Zener [lo], Landau 1111, Stiickelberg [12] 
and Majorana 1131, the general (n-level) problem still is an area of active research. 
Analytic results have been obtained for some special cases involving more than two 
degrees of freedom [l, 141, but no general solution for n 2 3 has so far been found. 

The central result of this paper is that some of the transition probabilities for 
the fully general n-level problem are araclly given by a simple formula. This 
formula &-via an approximation scheme introduced below-naturally obtained as 
an upproximate result in the limit where the crossings of pairs of levels are well 
separated. Furthermore, we extend the analytic work done so far and discuss the 
asymptotic behaviour of the equation under consideration. The formula mentioned 
above, together with the analytic results found previously and in this paper, leads us 
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to believe that a general analytic solution to the level-crossing problem might exist. 
This paper may be seen as an invitation to the reader to try and find it. lb that 
end we also attempted to briefly summarize some of the previous work in a coherent 
form and include all the information known to us which might be useful for further 
investigations. 

In section 2 we state 
the problem under consideration in a more precise form, and introduce important 
notation and general concepts. After a brief discussion of the two-level case 
(section 3) we show how in the limit of independenl crossings some transition 
probabilities for the general problem can be obtained approximately from the known 
two-level probabilities (section 4). In section 5 we make the important discovery 
that some of these approximate formulae actually hold ancl& in the fully general 
case. The most important special cases for which analytic results have been found 
so far are discussed in section 6. We give a simple analytic solution and calculate 
the full S-matrix for the equal-slope case, and we generalize the solution to the 
bowlie case (found by Carroll and Hioe [l]  for three states) to any number of states. 
WO important cases for which no analytic solution is yet hown, the 1 + n case 
and the three-level problem, are studied in section 7, followed by a short summary 
(section 8). In the appendix we discuss the asymptotic behaviour of the solutions and 
give an accurate definition of the 5'-matrix for our problem. 

S Brundobler and V Eher 

The detailed organization of this paper is as follows. 

2. General discussion, notation 

We are considering the differential equation 

i$(t) = ( A +  Bl)Q(1)  

where A and B are Hermitian matrices and Q is a vector with complex components 
&. This is a system of first-order complex linear differential equations. It conserves 
probability (i.e. I r U l z  = Ck l&I2 remains constant) and phase space volumet. Our 
goal is to find some kind of analytic expression for its solutions or for the S-matrix 
defined by it (see below). 

Equation (1) possesses several symmetries (i.e. operations on the matrices A and 
B corresponding to redefinitions of rU or the time 1 that leave the above form of the 
equation unchanged): 

(1) A + A + p l  ( Q  =e+'*') 

(11) B - B + p l  (q, = e i ~ l z / z ~ i )  

(111) A+-A' ,  B--B* ( " = a ' * )  

(IV) A + A + p B  ( t =  t' + p )  (2) 

( V) 

(VI) A + -A, (t  = -t') 

(VII) A UAU', B + UBUt ( Q  = U*', U unitary). 

A - pA, B - pZB (t = pt', p > 0) 

t Here the wlume is defined by the integration measure dV = U, d(Re ejr) d( Im t'.r). 
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Because we can diagonalize B in (1) by an appropriate unitary transformation 
(operation (VU) above), in the following we can assume that 8 is real and diagonal; 
denote its diagonal elements (or eigenvalues) by b, (IC = 1, . . . , n). If B has multiple 
eigenvalues, then we can diagonalize A in the corresponding subspaces, such that 
a,,  = 0 if k $ 1  and 6 ,  =.b,  (this will also be assumed in the following). Note that 
we still have the freedom to modify our equation using the symmetries (I) to (VI) 
and a subgroup of (VII) (U diagonal) without affecting the above assumptions. 

Denoting the elements of A by akk = ck and a,, = vkl (for k # 1 )  in order to 
make our notation more intuitive, we can now write (1) in the more wncrete form 

with E , ,  b, 
In phy! 

R, = v;, E C, and vkl = 0 whenever b, = 1 
ibing a quantum 31 terms we can interpret our equation as 

mechankal system with some number n of states or levels whose unperturbed energies 
E k ( t )  = c, + b,t are linear functions of time, and which are coupled by the constant 
off-diagonal matrix elements vkl; +, is the mplitude for the system to be in state IC. 
Unless we have the trivial case where all the eigenvalues of B are equal, there will 
be pairs ( k . 0  of levels, whose unperturbed energies E J t )  and E,(i) aoss at some 

, . I  - I. . I .. I 
point in time-thus the name 'level-crossing problem'. 

If all the 
couplings v,, are equal to zero, the time evolution of the system is trivial-the 
different degrees of freedom are decoupled and the general solution is lClk(t) = 
c,e-i+k(t), with arbitrary constants c, and the phases $,(i) being defined by 
4,(1) = /:(e, + bkt')dt' = c,t + ib,t2. If on the other hand there are non- 
zero couplings, transitions between different states become possible, and things are 
more complicated. However, for large times t the terms b,t on the diagonal will 
cause more and more rapid relative oscillations between the different amplitudes, 
and thus suppress the mixing due to the coupling terms. This becomes clearer if we 
write down our equation in the interaction picture, i.e. transform to new variables q1 
defined by + , ( l )  = e-'*".(*)$$(t). In terms of Q', (3) becomes 

What kind of behaviour do we expect from the solutions of (3)? 

We see that the non-zero elements of C ( t )  oscillate increasingly faster as the time 
gets larger (recall that U,, = 0 if b, = b,).  

In fact, numerical integrations show (and in appendix A we will prove) that the 
absolute values l+,(t)l of our amplitudes approach limits for 1 - &CO, or, in other 
words, that for all /c and 1 the limit 

existst (where U ( l ' , l )  is the time evolution operator for our equation). In physical 
terms this means that there are well defined transition probabilities Sil for the system 

t Unles k # I ,  b k  = br and = q; see the Cootnole in appendix A for a remark on that case. 
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to go from state 1 at time 1 -+ -cc to state k at 1 -  +cc. The matrix defined hy 
(5) will in the following be referred to as the S-matrix for our problem (note that in 
appendix A we will give a more precise definition of the S-matrix which-in contrast 
to (S)-ako retains phase information). 

Since the transition probabilities are the quantities of physical interest, our task 
is to calculate the S-matrix defined by (S), i.e. to determine its dependence on the 
parameters vklr b, and E ~ .  From the above definition of the S-matrix it follows that 
it is invariant under the symmetry operations (2) (I)-(V) and (VU) (for diagonal U). 
This restricts the possible forms an explicit formula for elements of S can have. In 
particular, for a pair of levels k and 1 with a crossing (i.e. for which b, # b,), the 
Landau-Zener (LZ) parameter 

S Brundobler and V EIser 

is essentially the only combination of the parameters pertaining to this crossing (b,, 
b,, E,., q, U,.,, vlk) which is invariant under the above symmetry operations (Le. 
any invariant function depending only on these six parameters can be written as a 
function of z,.,). The LZ parameters will play a very important role in the Collowing- 
all transition probabilities for which explicit formulae have been found so Car (in this 
paper or previously) are simple functions of the E, , .  For me in the following, let us 
also define 

3. WO degrees OF freedom 

The simplest non-trivial case of the general level-crossing problem is the one with 
two degrees of freedom and b, # b,: 

It was first solved in 1932 by Zener [lo], Landau 1111, Stiickelberg 1121 and Majorana 
1131 (see also Utinnier 1151 for a particularly concise approach). The two-level case 
is a special instance of the equal-slope case discussed in section 6.1, so that our 
calculation of the S-matrix for that case also applies here. It is given by 

.=(: ;) (9) 

where p = e-rr, q = and i = lvlz/1b2 - b,l is the LZ parameter defined 
above. According to the discussion in the previous section it follow from symmetry 
considerations alone that the S-matrix for the two-level case must be a function of 
z only, but it seems remarkable that the functional dependence is of such a simple 
formt. 

t Note that Q) is an instance of the adiahric theorem: Ihe probability for leaving lhe instantaneous 
gmund stale of Ihe syslem (state 1 for t 3 -m and stale 2 for t 3 t m ,  if 11 > b,) is exponentially 
small in lhe Limit of slow pasage a b 2  - bll -+ 0). 
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In words we can summarize this result as follows. If the system is originally in 
one of its two states, then the crossing of the two levels results in a reduction in 
the amplitude in the original state by a factor which is essenrially the exponential of 
the squared coupling divided by the rate of relative energy change. The other state 
picks up the amount of amplitude dictated by probability conservation. XI gain some 
intuition of how the amplitudes evolve in time, see figure 1. 

o,75 

( a )  0.50 

0.25 

0.00 

*moll U-parameter 

l.OO - 
q=0.06 

- b r b i = l . O  
c,=r2=0.0 

- 

- 

-12.0 -6.0 0.0 6.0 12.0 
t 

1 .oo 

0.75 

0.50 

0.25 

large LZ-porometer 

b r b i = l  .O 

0.00 I 1 
-40.0 -20.0 0.0 20.0 40.0 

1 

Figure 1. Time evolution of the mmplex amplitudes (i.e. lheir magnitudes) for the two- 
level problem, with die system initially in stale 1. In (a) the LZ parameter is relatively 
small ( q  = 0.06). while in @) it is fairly large ( q  = IO) .  Even though the detailed time 
evolution is very different, in b t h  cases large amounts of amplitude are exchanged only 
at times close to t = 0 (when the levels moss). 

4 Independent crossing approximation ([CA) 

Since the S-matrix for the case of two levels can be calculated, hut no general 
solution for three or more levels exists, one may ask to what extent or under which 
circumstances the general case can be understood in terms of crossings of pairs of 
the levels involved. From the plots in the previous section, or by looking at the 
problem in the interaction picture (equation (4)), one sees that significant amounts 
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of amplitude are exchanged between two states k and 1 only near the time when the 
two levels cross (ie. when E k ( t )  = El(t)).  Thus we expect that if all crossings are 
well separated (and there are no multiple crossings, Le. crossings of more than two 
levels at one pint) ,  they can be considered as independent of each other and each of 
them is described by the S-matrix (9). This approach will in the following be referred 
to as the Mependenf crossing approximalion (ICA). 

What kind of information the ICA yields is best explained by use of an example. 
Consider the ‘level-crossing diagram’ in figure 2(a). Say initially the system is in state 
1, ie. = 1, = 1 $ 3 1  = 0. Then at the crossing of levels 1 and 3, the amplitude 
splits up according to (9); the amount pI3 remaining in state 1 splits up again at the 
crossing (1-2). Note that in this case we obtain values for all the final amplitudes 
(and thus the corresponding S-matrix elements); the crossing (2-3) never comes into 
play, because all the amplitude is in state 1 when it takes place. 

S Brundobler and V Elser 

/ 3 3‘ I t  

Figure 2. Schematic illuslralion of lhe ICA rule for three levels. (a) and @) show the 
two possible orderings of lhe crossings. Note that in (a) a11 three final amplitudes can 
be predicted, but in (b) only one of them. 

In contrast to the previous example, now consider figure 2(b) (which differs from 
2(a) only in the ordering of the crossings). If the system initially is in state 1, the 
amplitude first splits at the crossing (1-2), and then the amount remaining in state 1 
splits again at (1-3). But now bofh the levels 2 and 3 have non-zero amplitude before 
they cross, and (since our method is not taking into account any phase information) 
we cannot predict the final amplitudes for those two levels. 

So our knowledge of the S-matrix for the two-level problem enables us to 
predict-in the limit of well separated crossings-some, but by no means all, transition 
probabilities for the general case. Whether a particular transition probability can be 
predicted or not may depend on the ordering of the crossings (as seen above), or on 
the existence of couplings (for example, if uIz = 0 in figure 2(b), then qlZ = 0 and 
approximations for all final amplitudes can be obtained). 

However, there are some ‘special’ matrix elements which can always be predicted 
by the ICA: the diagonal elements S,, corresponding to states 12 with maximum 
or minimum slope (b, = maxl=l ,..,, m{bl}, or b, = min,=, ,,._, (61}). The values 
obtained are 

skk n p k l  (10) 
I d ,  ..., n 

b i f b k  
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(every level I with b, # b, crosses the level k and thus reduces by the factor 
p k l ;  because the level k has maximum or minimum slope, no amplitude that has 
branched off from it at some point can ever return). 

By improving the above method and taking into account phase information, we 
could also obtain approximations for all other S-matrix elements. However, due to 
interference effects, the elements so obtained would depend on the separations of the 
crossings (ie. the e h )  very sensitively and thus do not approach limits as the crossings 
are separated more and more. In contrast to that, the matrix elements obtainable 
without the use of phase information do not depend on the e ,  at all (for a given 
ordering of the crossings). 

In the following we will see that the [CA not only offers some intuition by 
allowing a simple (though only partial) understanding of the general n-level problem 
in terms of single crossings (in the limit of these being well separated), but that some 
‘approximate’ results predicted by it actually are auct .  

5. General formula for ‘special’ S-matrix elements 

From the derivation of formula (10) one would not expect it to be useful unless the 
crossings of level k with the other levels are well separated bom each other and from 
all the other crossings. However, to our surprise we found in numerical simulations 
that (IO) is an eract result which holds always except in the very special case where 
there is another level 1 with identical unperturbed enerpy as level k. Let us write 
down this statement in accurate form. 

Consider the differential equation (3). If the level k has minimum or maximum 
slope (bk = min, =,,.,,,, {b , ] ,  or b, = maxi =,,,,,,, {b!}) ,  and there is no other level 
with the same unperturbed energy (Le. there is no 1 # k with b, = 0, and e ,  = E~), 
then the diagonal S-matrix element S,, (defined by (5)) corresponding to that level 
is sac@ given by 

b r f b r  b i f b x  b t f b x  

Formula (11) agrees with all analytic results found so far (see section 6) and we 
also verified it by numerous highly accurate numerical integrations, so that we have 
no doubts about the correctness of the above statement. Note that the one and only 
restriction (that there may be no other level with identical unperturbed energy) to 
the validity of (11) is easy to understand (see the footnote in appendix A). 

The structure and simplicity of formula (11) reflects the way it was obtained in the 
previous section; every level I crossing the level k contributes a factor of exp(-srkr). 
S,, only depends on the IZ parameters pertaining to the level k, and not on the el 
and the couplings between the other levels. Note that in contrast to this, the other 
S-matrix elements do depend on the E, (see section 7.2) and thus cannot be given 
by formulae as simple as (11). 

The fact that some (at least two) transition probabilities for the fully general 
problem are given by such simple expressions, suggests that a general analytic solution 
might exist or a more complete understanding of the problem in terms of two-level 
crossings might be possible. Unfortunately we have not yet been able to find a 
general proof of (11). In the next section we will discuss special cases of (3), for 
which analytic solutions-f course in agreement with (11)-exist. 
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6. Analytical solutions to special cases 

In spite of the simplicity and generality of the formula (11) discovered in the previous 
section, analytic solutions to equation (3) (and thus proofs for (11)) have so far only 
been found for some special cases of fairly limited scope. In the following subsections 
we will discuss the two most general of theset. They both have in common that they 
apply to any number of levels, they contain the two-level problem as a special case, 
and there is a special level which is coupled to all the others, but no WO of these are 
coupled to each other. 

61. The equal-slope case 

Assume that all but one of the eigenvalues b, of B in (1) are equal. Then we can 
use the symmetly transformations (2) to write (3) in the form 

with 6 f; 0 and the E, ordered according to < . . . < en (assume that no 
two of the E are equal; also assume for definiteness that b > 0). We have a 'special' 
degree of freedom ?+bo, and n others which are not coupled to each other and for 
which the unperturbed energies as functions of time have equal slopes (see figure 3). 
This special case of the level-crossing problem was fust considered by Demkov [I41 
in 1966; in the Same year the S-matrix element S, (i.e. the reduction of amplitude 
in the special state due to its interaction with the others) was determined by Oshcrov 
[17] (see also [IS]). We will in the following calculate the full S-matrix. 

< 

1 

Figure 3. Unperlurbed energy levels as functions of time 
for the equal-slope case. One level m- a number of 
other ones which all have equal slope and thus do not 
aoss each other. 

Equation (12) is straightforward to solve via Fourier Uansformation. Writing 
it down component by component and Fourier transforming according to @ ( t )  = 
Jc dwe&"@(w) (where the contour C will be specified later) gives 

0 

t lo hcl, to our knowledge the only other case solved so far is the 'SU(2)' case i* = (J,+ btJ;)'# (with 
the matrices J ,  and J: k i n g  n-dimensional representations of lhe curresponding angular momentum 
operators; sec [16]). But since there is wentially only one free parameter. this case is wty special and 
not important to our WO& here. 



S-mahix for generalized Landau-Zener problem 1219 

Solving the n lower equations for & gives qk = (u;/(w - e k ) ) & ;  inserting this 
into the first equation results in a first-order linear differential equation in &,which 
is solved by &(w) = exp[(i/2b)w2] n k ( ~ - ~ k ) - k k ,  where the zk = Iuk12/b are the 
by now familiar LZ parameters. So we obtain 

&(f) = kdwexp(-iwi + (i/2b)w2)&.(w) 

+"(W) = n ( w  - E k ) - i a k  I k 
(14) 

By inserting (14) into the components of (12) we can easily check that we actually 
have a solution (because of the factor exp(i/2b)w2 in our integrals, any choice of the 
contour C originating and ending at &eiz/4w will ensure that all integrals converge 
and any boundary terms from partial integrations vanish). 

In appendix B we will describe how the above integral representation yields a 
complete set of solutions, from which the S-matrix can be obtained. It is given by 

92P3.. . P n  P3P4. . . P,, I ; ;  i j  P,...Pn 91P2.. .Pn 
91 PI 0 0 

PI92 41 42 PZ 0 
... 0 PIP293 qIPZq3 92 93 P3 
. .  

PI . . .Pn-lqn q1P2.. . Pn-lqn q2P3.. .Pn-lqn q3P4.. .Pn-Iqn . . . P, 
(15) 

with pk = e - s a k  and qk = ,/I - p i .  
Note that the S-matrix elements do not depend on the e k  (for a given ordering 

of those). The same is true for predictions of the ICA, and in fact it is quite easy to 
see that here the ICA predicts values for all S-matrix elements, and they all agree 
with (19-h other words, the ICA is exact for the equal-slope m e .  Formula (15) 
(together with the assumed ordering of the ek) implies that some S-matrix elements 
perform discontinuous jumps if for a pair 1 ,  m of indices the sign of e,,, - q changes. 
At first glance this 'infinitely sensitive' dependence of the S-matrix on the ck  seems 
counter-intuitive, but it can be accounted for by the fact that the time it takes the 
levels 1 and m to equilibrate, diverges for IC, - -+ 0. We also want to remark 
that the S-matrix (U) depends ve'y sensitively on the equality of the slopes of levels 
1,. . . , n-small differences between these slopes may lead to large deviations of the 
S,, from (15). 

62. The bowtic care 

Another case for which an explicit solution exists is the one where all levels are 
crossing at the Same p i n t  (see figure 4), and there is one special degree of freedom, 
say &, coupled to all the others, but with those not being coupled to each other. 
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Using (2) this case can be written in the form 

S Brundobler and V Elser 

i 

0 u1 ... wn 
uf blt  ... 0 

. .  . .  
U:, 0 ... Brit 

("). 
?k 

n 

2 
1 ow lhem may be mupled 10 level 0. 

F ~ u m  4. Unperturbed energy levels as functions of time 
for the bowtie case. All lwels crass at one point in time. 
Levels 1 to 18 are not mupled to each olher, but all of 

E d 0  

Note that we have a time-reversal symmetry here: if ( $ ~ ~ ( t ) ; + , ( i ) ,  . . . , $ j n ( t ) )  is 
a solution, then (+u(-t);-+l(-t), . . . ,-+,,(-t)) also is. This implies that there is 
a complete basis of solutions for which is even and the $ k  (k  = 1,. . . , n) are odd 
or vice versa. This special case was 6rst considered and solved by Carroll and Hioe 
[l, 21 for n = 2 (i.e. for three levels; note that the time-reversal symmetry is crucial 
for their solution). They also calculate the matrix of transition probabilities [l]; it is 
interesting to note that not only the 'special' transition probabilities agree with (ll), 
but that also all the other ones are very simple functions (polynomials of degree < 4) 
of the familiar parameters p k  = exp(-nz,) (with z, = I w ~ 1 ~ / l b k l ,  k = 1,2). 

Rewriting their solution in our notation and generalizing it to any number of 
levels we obtain 

with Z k  = IukIZ/bk. It is straightfonvard to verify that (17) solves (16) for t # 0 (as 
long as the contour C begins and ends at Im (U) = -m). In order to calculate the 
S-matrix, special attention has to be given to the point t = 0, where the integral for 
& ( t )  does not converge 121. It might be interesting to calculate the S-matrix for 
more than three degrees of freedom from (17); we have not attempted this yet. 

7. Discussion of two unsolved cases 

After having discussed the most general solutions found so far, let us now turn to 
two (in some sense) rather simple cases which have not been solved yet. We will 
see that the 1 + n case (which contains both the cases considered in section 6) can 
be rewritten as an integral equation, and we will attempt to gain some insight by 
studying the case of three levels. 
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%I. The 1 +n case 
Consider the situation where the on@ restriction is that there is a special state &, 
such that all the other states may be coupled to $,,, but not to each othert. Using 
symmetries (I) and (11) in (2), we can obtain E,, = B,, = 0, SO that (3) takes the form 

This case is the most simple generalization of borh the solvable special cases discussed 
in the previous section. 

Because the levels 1,. . . , n are not coupled to each other, (18) can be written as 
an integral equation in terms of so. Tb do this, first write down (18) component by 
component in the interaction picture (see section 2): 

k = l  

i$L=viei+k.(t)+u ( k =  1, ..., n). 

This can be transformed to a Volterra integro-differential equation (with degenerate 
kernel) by integrating the second set of equations and inserting into the first one. For 
the initial condition +,,(to) = 1, $ k ( t u )  = 0 (k = 1,. . . ,n.) we get 

&(i) = lo ds  L ( t , s ) & ( s )  with L ( d , s )  = -Clvn.lZeid~L(")-i+*(t). (20) 
k 

Integrating both sides yields the Volterra integral equation 

t 

with 

Equation (21) is more general than all special cases solved so far, but nevertheless 
it may be easier to solve than the fully general problem (which cannot be converted 
to an integral equation in any obvious way). In the limit tu - -CO the above 
initial condition implies I&(t - CO) ]  = S,; if the B, (k = 1,. . . , n )  are either all 
positive or all negative, then S, is a 'special' matrix element (see section 5) to which 
formula (11) applies, and the final amplitude in state 0 should have the simple form 
I&(w)l = exp(-rCE=, zk) with zk = IvkI2/lb,I. Unfortunately we have not (yet) 
been able to solve (21) or even calculate I&(co)l. 
t ?lis case wrresponds (in some approximation) lo the problem of a uniformly accelerated panicle 
wupled to the elementary excitations of a solid or liquid, which was our original motivation to study lhe 
l e v e l a w i n g  problem. 
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Z 2 Three degrees of ffeedom 

The smallest system for which no explicit solution is known is the case of three 
degrees of freedom with no two of the 6 ,  being equal. So, to gain some intuition 
about the general problem, it should be instructive to study the behaviour of the 
S-matrix in this case. Because of b, # b,, we can obtain cI = t2 = 0 by use of the 
symmetries (I) and (IV) in (2), and write (3) as 

S BrundobIer and V Elser 

We will also assume that the b, are ordered according to b, < b, < b3, so that 
formula (11) applies to SI, and S,, hut not to S,. In the following we study 
the dependence of the S-matrix on c3 and compare the results to (11) and the ICA 
predictions. 

First let us consider the case where all three levels are coupled to each other and 
look at the S-matrix elements corresponding to the initial condition of all amplitude 
in state 1 (figure 5(a)). We see that-in agreement with our general statement (11)- 
Sit is independent of t3 and exactly given by the prediction of the independent 
crossing approximation. S,, and S,, approach limits for c3 -, fa, but not for 
c3 -+ -CO; instead they continue to oscillate, with the amplitudes of the oscillations 
approaching constant values and the frequency increasing proportionally to cy This 
is exactly what we expect from the discussion in the context of the ICA in section 
4 (note that the limits E )  -+ +CO and e3 + -ca correspond to figures 2(a) and (b) 
respectively). 

From all that has been said up to now, it seems as if all predictions of the I ~ A  
which do not depend on the ordering of the crossings (i.e. on the eh) ,  might be 
exact. But this is not the case-ansider figure 5(b), where the S-matrix elements 
S,,, IC = 1,2,3, are plotted for the case where levels 1 and 3 are not coupled to 
each other. Now the ICA predict$ S, = p 1 2 p ,  independently of the ordering of 
the crossings, and-in contrast to the case of S,, and S,, above-it gives no a priori 
reason why S, would have to depend on c3. But it is clear from the graph that, even 
though S, approaches the limit p12p ,  for c3 i fca, S, = p12pD does nol hold 
exactlyt. Thus it seems that formula (11) exclusively applies to the S-matrix elements 
specified in section 5. 

8. Summav, outlook 

All transition probabilities for special cases of the level-crossing problem which have 
been determined analytically so far (see section 6.1 and the work by Carroll and Hioe 
11,161, have the common feature that they are polynomials in the parameters p k I  
defined at the end of section 2. Furthermore, we have found that certain 'special' 
transition probabilities for the fully general problem are given emcl@ by the veery 
simple formula (ll),  which-in the limit of independent crossings-arises naturally 
from the well known solution of the two-level case. The simple form and generality 

t Note thaf the symmelly Sa(-f,) = Sa(f3) evident in the plot is no mystery41 tollow from the 
behaviour of the S-matrix under lhe symmelry operations in (2). 



S-mairix for generahed Landau-Zener problem 1223 

1 .oo 

0.75 

(a) 0.50 

0.25 

0.00 

a11 three couplings nonzero 

7 
(0.750) Sll (0.750) 

1 .oo 

0.75 

(b) 0.50 

0.25 

0.00 

-25.0 -12.5 0.0 12.5 25.0 
E 3  

two nonzero couplings (v13=0) 

r I I I 

- 15.0 -7.5 0.0 7.5 15.0 
E3 

Figure 5. S-matrix elements Cor Ihe Ihree-level pmblem as  functions OC q (with 
6 1  = e2 = 0). Graph (a) shows the S-matrix elemenls Shl for k = I ,  2 , 3  (in other 
wonfs, the 6nal amplitudes I&(m)[ for the initial mndition of the system k i n g  in 
state I) for the Q S ~  where all three levels are mupled U, each other, In @) one of 
the muplings ( ~ 1 3 )  is equal U) zero and the system initially is in state 2 n e  parameter 
M I U ~  used are v y  = 0.28, "13 = 0.2, v n  = 0.75, b l  = 0.0, bz  = 1.0. b3 = 3.0 for 
(a), and "12 = 0.8, = 0, v~ = 0.44, bl = 0.0, b z  = 2.0, b,  = 3.0 for @); the 
numbers in brackets a re  the predictions given by the I-. 

of (11) suggest that one should be able to find an analytic proof for it, that a more 
complete understanding of the general problem in terms of two-level crossings might 
be possible, or that there might even be a general analytic solution to equation (3). 

In contrast to that, as of yet explicit solutions (and thus proofs of (11)) have 
only been found for fairly limited special cases of the problem, and even in these 
cases considerable amounts of tedious work [Z] were sometimes necessary to calculate 
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transition probabilities. In fact, even though there are many ways to write the solution 
for the two-level problem, it seems that even for this most simple case, no one has 
yet given a nice expression which is symmetric in the parameters corresponding to 
the two levels. 

Thus our conclusion is that perhaps the right approach for rackling (3) has not 
been found yet and there is a nice solution to be discovered. We hope that this paper 
will inspire one of its readers to find it. 

S Brundobler and V Eher 
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Appendix A. Asymptotic behaviour 

In this appendix we will study the asymptotic behaviour of the solutions to (3) in some 
detail. This will enable us to prove the existence of the S-matrix for our problem and 
give an improved definition of it that also contains phase information (in contrast to 
the definition in section 2). 

The discussion in section 2 (and our numerical work) suggest that there are 
solutions and Qf(,) of (3) corresponding to the system being in the state I for 
t - --03 and t -+ +ca respectively. Or, in other words, solutions whose components 
@) satisfy 

Our explicit solution for the equal-slope case (see appendix B) suggests that to 
lowest order in 1/t  the asymptotic solutions might have the form 

with constants A, and B,,. This motivates the ansatz 

Inserting (25) into (3) and collecting terms of equal order in 1/ t  yields equations for 
the coefficients A,, arj and pkij. Some tedious work shows that, if there is no level 
IC # 1 for which 6, = 6, and ek = e l ,  all the equations can be satisfied and all the 
coefficients are uniquely determinedt. In particular, we obtain 

t It there b a number of level5 say kl, . . . , k,, with identical values of bh and C A ,  then asymptotic nates 
$*(') satisfying (U) can, in general, only be defined after a suitable unitary transIonnaiion is performed 
in lhe subspace of the amplitudes &,.  . . , $&, (and al l  other such subspaces with identical values of 
bh and e h ) .  We will not discuss this complication any further. 
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Thus the @')(f) have asymptotic expansions as in (U), and to lowest order in l / t  
they are given by (24) with A I  and B,, as in (26). Note that the above formulae are 
identical for t t t o o  and t + -W. 

(1  = 1 ,  ... ,n) are complete sets of 
solutions, so that there are uniquely defined coefficients S,, satisfying 

Clearly both the @-(I) and the 

If we expand a solution @ ( 1 )  in terms of the asymptotic states as \y = E, c ;q - ( I )  = 
E, cf@+( ' ) ,  then (27) implies c: = E, s,,c;. In that sense the matrix 3 completely 
describes the evolution of our system from t = -m to t = CO. Or, in other words, 
equation (3) can be viewed as a scattering problem with asymptotic states q*(') 
and the S-matrix being given by S. The magnitudes of its elements agree with the 
S-matrix defined in section 2 (i.e. Iskf/ = S,,), but in contrast to S the improved 
S-matrix 3 also contains phase information. Note that (24) together with (26) can 
be used to obtain accurate numerical results for S. 

Figure Al. (a) shows the iopology of the mntous  F e d  io Cilbulate the S-matrix for 
the equal dope me. CO goes [rom -ei*I4m to +d"14m and has all the singularities 
on its right. C, ( I  = 1, , . , , n) stam and ends at +dw14m, and encloses the singulality 
w = 6 1  only. In @) an example of a deformed mntour ( I  = I ,  . . . , I & ;  for the limit 
: 3 -m) is given. 

Appendix B. S-matrix for equal-slope case 

Here we will describe how the S-matrix (15) can be obtained from the integral 
representation (15). ?b be able to calculate the S-matrix, we need a complete set 
of solutions to (12). Consider the n t 1 different contours CO,. . . , C,, shown in 
figure Al(a), and denote the solution obtained from C, by $'('I (1 = 0,. . . , n). We 
need to evaluate the asymptotic behaviour of the components $>f) (k = 0,. . . , n) 
of the @('I for 1 + &CO. 'lb do this, let us deform the contours such that their 
endpiem go from w = 6t to fei"/4co, and all other parts remain close to the real 
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axis (see figure AI@) for an example). Then we can argue that (in the limit t -+ &CO) 

contributions of 0(1) to $ i i ) ( t )  only can come from the saddle point w = bt for 
k = 0, and from the neighbourhood of the singularity at w = ck for k = 1,. . . , n. 
Omitting further details, we get for t 3 -CO: 

S Bnrndobler and V Elser 

+p)(t)  Fo(t)ex("l+~..+zn) 

+$')(t)  - ~~(t)e3~~~/2e~(~lt~t...t'~) 
$f'(t) = O(l/t) 

( 1  = I , .  . . , n) (28) 

( I C  f 1 )  

and, for t -t +CO, 

F k ( l )  = v~e i '~ / (Zb)e - i ' k '~ t~LX exp ( - i  zmhlem - cil)2sinh(xr,)~(-izc). 
m f k  

(30) 

Note that, because of ~~III~--~ $f)(t) = 0 for k f 1,  the W(') are (up to constant 
factors) identical with the asymptotic solutions rIr-(l) defined in appendix 4 and so 
the S-matrix (without phase information) is given by S,, = ~ ~ ~ ~ ) ( c o ) ~ / ~ ~ ~ ~ ' ) ( - c o ) ~ .  
Using the identity Ir(k)l = (r/zsinh(nz))L/Z (z  real), we get from the above 

s - e-=(z! t . , . t*" )  

kO - 1 
Sol = (1 -e- 2rrr ) 1/2e-"(*,+1 t... tZ") 

w -  

S - e-x(n+.'.trk-1)(1 - e-Z*'k 1/2 ( k  = 1,. , .,n) 

(31) 
S k ]  = 0 
s -e-ra 

s,, = (1  -e-2arr)1/2e-~(i,tlt., tzt-')(l- e-Za'X)l/2 

(where the index 1 always ~ n s  from 1 to n). This, rewritten in terms of the p ,  and 
qk ,  yields the S-matrix (15) in section 6.1. 

(1  < k < 1 )  

I I  - 

(k > 1 )  
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